The realization space is [1 1 1 0 0 1 1 1 0 1 1] [1 0 4*x1^2 - 4*x1 + 1 1 0 1 0 4*x1^2 - 4*x1 + 1 1 2*x1^2 - 2*x1 + 1 2*x1^2 - 2*x1 + 1] [0 0 0 0 1 1 x1 2*x1^2 - 2*x1 + 1 2*x1^2 - 4*x1 + 2 2*x1^2 - 2*x1 + 1 x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (4*x1^3 - 8*x1^2 + 4*x1 - 1) avoiding the zero loci of the polynomials RingElem[x1, 2, x1 - 1, 2*x1 - 1, 2*x1^2 - 2*x1 + 1, 4*x1^3 - 12*x1^2 + 12*x1 - 5, 4*x1^4 - 12*x1^3 + 14*x1^2 - 9*x1 + 2, 4*x1^3 - 12*x1^2 + 12*x1 - 3, 4*x1^3 - 8*x1^2 + 2*x1 + 1, 2*x1^2 - 4*x1 + 1, 4*x1^4 - 12*x1^3 + 10*x1^2 - 2*x1 - 1, 4*x1^4 - 12*x1^3 + 14*x1^2 - 6*x1 + 1, 2*x1^3 - 2*x1 + 1, 8*x1^4 - 18*x1^3 + 16*x1^2 - 6*x1 + 1, 8*x1^4 - 24*x1^3 + 22*x1^2 - 6*x1 - 1, 8*x1^4 - 24*x1^3 + 24*x1^2 - 10*x1 + 1, 2*x1 - 3, 4*x1^2 - 6*x1 + 1, 2*x1^2 - 3*x1 + 2, 8*x1^4 - 24*x1^3 + 26*x1^2 - 11*x1 + 2, 8*x1^4 - 24*x1^3 + 24*x1^2 - 8*x1 + 1, 2*x1^2 - 1]